8 research outputs found

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information

    No full text
    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition

    Cycle-Consistent Adversarial GAN: The Integration of Adversarial Attack and Defense

    No full text
    In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack

    Study on the Preparation and Optical Properties of Graphene Oxide@Fe<sub>3</sub>O<sub>4</sub> Two-Dimensional Magnetically Oriented Nanocomposites

    No full text
    In this work, graphene oxide@Fe3O4 (GO@Fe3O4) two-dimensional magnetically oriented nanocomposites were prepared through the co-precipitation approach using graphene oxide as the carrier and FeCl3·6H2O and FeSO4·7H2O as iron sources. The samples were characterized and tested by X-ray diffraction, a transmission electron microscope, Fourier-transform infrared spectroscopy, a vibrating-specimen magnetometer, a polarized optical microscope, an optical microscope, etc. The effects of material ratios and reaction conditions on the coating effects of Fe3O4 on the GO surface were investigated. The stable GO@Fe3O4 sol system was studied and constructed, and the optical properties of the GO@Fe3O4 sol were revealed. The results demonstrated the GO@Fe3O4 two-dimensional nanocomposites uniformly coated with Fe3O4 nanoparticles were successfully prepared. The GO@Fe3O4 two-dimensional nanocomposites exhibited superparamagnetic properties at room temperature, whose coercive force was 0. The stable GO@Fe3O4 sol system could be obtained by maintaining 1 3O4 sol showed magneto-orientation properties, liquid crystalline properties, and photonic crystal properties under the influence of the external magnetic field. The strength and direction of the magnetic field and the solid content of the GO@ Fe3O4 sol could regulate the aforementioned properties. The results suggest that GO@Fe3O4 two-dimensional magnetically oriented nanocomposites have potential applications in photonic switches, gas barriers, and display devices

    Induction of protective immune response against both PPRV and FMDV by a novel recombinant PPRV expressing FMDV VP1

    Get PDF
    International audiencePeste des petits ruminants (PPR) and foot-and-mouth disease (FMD) are both highly contagious diseases of small domestic and wild ruminants caused by the PPR virus (PPRV) and the FMD virus (FMDV). In this study, a recombinant PPRV expressing the FMDV VP1 gene (rPPRV/VP1) was generated and FMDV VP1 expression did not impair replication of the recombinant virus in vitro and immunogenicity in inducing neutralizing antibody against PPR in goats. Vaccination with one dose of rPPRV/VP1 induced FMDV neutralizing antibody in goats and protected them from challenge with virulent FMDV. Our results suggest that the recombinant PPRV expressing the FMDV VP1 protein is a potential dual live vectored vaccine against PPRV and FMDV
    corecore